Kinetic Study of Cycloaddition Reactions of Transition Metal-Propargyl and $-\eta^1$ -Allyl **Complexes with p-Toluenesulfonyl Isocyanate'**

PRISCILLA B. BELL and ANDREW WOJCICKI*

Receiced August 6, *1980*

Reactions between transition metal-propargyl complexes (MCH₂C \equiv CR) and various unsaturated electrophiles have been examined with a view to finding a system that is readily amenable to a kinetic study under ambient conditions. The reaction between MCH₂C $=$ CR and p-toluenesulfonyl isocyanate (TSI), which proceeds cleanly, with no observable intermediates, **I**

to the [3+2] cycloadducts MC=C(R)C(O)N[S(O)₂C₆H₄CH₃-p]CH₂, was followed kinetically by infrared and, in some cases, 'H NMR spectroscopy, mostly in CH₂Cl₂ at 25.0 °C. The cycloaddition is first order in each of MCH₂C=CR and TSI; for a given R, the bimolecular rate constants decrease as a function of M in the order η^5 -C₅H₅Cr(NO)₂ > η^5 -C₅H₅Fe(CO)₂ > η^5 -C₅H₅M₀(CO)₃ > η^5 -C₅H₅W(CO)₃ > Mn(CO)₅, spanning 2 orders of magnitude. Replacement of a CO in η^5 -C₃H₅Mo(CO)₃CH₂C=CC₆H₅ or Mn(CO)₃CH₂C=CC₆H₅ with a better σ -bonding ligand (L) leads to an acceleration in the rate of the addition, which depends on ligand basicity, viz., L = P(C₆H₅)₃ > P(OC₆H₅)₃ > CO. Methylpropargyl complexes (MCH₂C $=$ CCH₃) react 16-30 times as rapidly as the corresponding phenylpropargyl complexes $(MCH_2C=CC_6H_5)$. Solvent influence on the rate of the reactions of η^5 -C₅H₃Mo(CO)₃CH₂C=CCH₃ and η^5 -C₃H₃Fe- $(CO)_2CH_2C=CC_6H_5$ with TSI in toluene, chlorobenzene, CH_2Cl_2 , or CH₃CN is very small; the activation parameters for the first-mentioned reaction in toluene are $E_a = 11.5$ kcal/mol, $\Delta H^* = 10.9$ kcal/mol, and $\Delta S^* = -31$ eu. These data do not distinguish between a two-step dipolar mechanism and a concerted one, but the former is favored **on** the basis of the earlier stereochemical studies. The related reaction of η^5 -C₅H₅Fe(CO)₂CH₂C(R)=C(R')R" with TSI to give media and the contract of the the bimolecular rate constants decrease as a function of the η^1 -allyl ligand in the order CH₂CH=CHCH₃ > CH₂CH=C(CH₃)₂ > CH₂CH=CH₂ ≥ CH₂CH=CHC₆H₅, indicating that both steric and electronic effects are contributing. Surprisingly, structurally related η^5 -C₅H₃Fe(CO)₂CH₂C=CR and η^5 -C₅H₃Fe(CO)₂CH₂CH=CHR" (R = R") cycloadd **TSI** at comparable

Introduction

rates

The subject of the $[3+2]$ cycloaddition reactions of transition metal-propargyl and $-\eta$ ¹-allyl complexes with various unsaturated electrophilic reagents, $E=Nu$ ($E =$ electrophilic part, $Nu = nucleophilic$ part; eq 1 and 2), has received con-

$$
MCH_{2}C \equiv CR + E = Nu \longrightarrow \begin{array}{ccc} + & CH_{2} & : Nu \\ \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow \\ & & \downarrow & \downarrow \\ & & & \downarrow \\ & & & \downarrow \\ & & & & \downarrow \end{array} \longrightarrow M \longrightarrow \begin{array}{ccc} Nu & & & & N_{11} & & & & (1) \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & & \downarrow & \downarrow & \downarrow & \downarrow \\ & & & \downarrow & \downarrow & \downarrow \\ & & & & \downarrow & \downarrow \end{array}
$$

$$
MCH_{2}C(R) = C(R^{\prime})R^{\prime\prime} + E = Nu \longrightarrow M - \begin{matrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{matrix} \longrightarrow M - \begin{matrix} R & Nu \\ 1 & 1 \\ 1 & 1 \end{matrix} \qquad (2)
$$

siderable attention in recent years. $2-6$ These reactions are quite general for a number of molecules E=Nu, including (N- $\text{C})_2\text{C}=\text{C}(\text{CN})_2 \left(\text{TCNE}\right),^{5,7} \left(\text{CF}_3\right)_2\text{CO},^8 \text{CIS}(\text{O})_2\text{NCO},^{5,9} \text{and}^{5,7}$ $RS(O)₂NSO₁₀$ to mention a few. They appear to proceed in two steps, via a dipolar metal- η^2 -allene or $-\eta^2$ -olefin intermediate.^{11,12}

Several aspects of the cycloaddition remain to be elucidated, however. Foremost among them is the effect of the metal and

- Wojcicki, **A.** *Ann. 'V.Y. Acad. Sci.* **1974,** *239,* 100.
- Williams, J. P.; Wojcicki, **A.** *Inorg. Chem.* **1977,** *16,* 2506.
-
- Rosenblum, M. Acc. Chem. Res. 1974, 7, 122.
Cutler, A.; Ehntholt, D.; Giering, W. P.; Lennon, P.; Raghu, S.; Rosan,
A.; Rosenblum, M.; Tancrede, J.; Wells, D. J. Am. Chem. Soc. 1976, *98,* 3495.
- Rosenblum, M.; Waterman, P. **S.** *J. Organomef. Chem.* **1980,** *187,* 267.
-
- Su, S. R.; Wojcicki, A. *Inorg. Chim. Acta* 1974, 8, 55.
Lichtenberg, D. W.; Wojcicki, A. *Inorg. Chem.* 1975, 14, 1295.
Yamamoto, Y.; Wojcicki, A. *Inorg. Chem.* 1973, 12, 1779.
Leung, T. W.; Wojcicki, A., to be submitted
-
-
- (11) Cutler, A.; Ehntholt, D.; Lennon, P.; Nicholas, K.; Marten, D. F.; Madhavarao, M.; Raghu, S.; Rosan, A.; Rosenblum, M. *J. Am. Chem. SOC.* **1975,** *97,* 3149.
- Chen, L. S.: **Su,** *S.* R.: Wojcicki, **A.** *Inorg. Chim. Acta* **1978,** *27,* 79.

ancillary ligands on the relative reactivity toward a given $E=Nu$ of the unsaturated hydrocarbon fragment in these complexes. This question has been addressed, but in a limited way, only for the η -allyl complexes. It was found that the relative reactivity of $MCH_2CH=CH_2$ toward *o*- $\text{CIC}_6\text{H}_4\text{CH}=\text{C(CN)}_2$ follows the order $\text{M} = \eta^5\text{-C}_5\text{H}_5\text{Fe(CO)}_2$ $> \eta^5$ -C₅H₅W(CO)₃ $\gg \eta^5$ -C₅H₅Cr(NO)₂.⁵ More recently, the order $M = \eta^5 - C_5H_5Fe(CO)[P(OCH_2)_3CCH_3] > \eta^5 - C_5H_5Fe$ $(CO)[P(OC_6H_5)_3]$ > η^5 -C₅H₅Fe(CO)₂ was established for the reactions of $MCH_2CH=CH_2$ with cyano olefins.⁶

In this paper we report the results of a kinetic study of the cycloaddition reaction of various metal-propargyl complexes with $p\text{-CH}_3\text{C}_6\text{H}_4\text{S}(O)$, NCO (TSI). The effect on the reactivity of each of the variables, the metal, the ancillary ligands, and the substituent R on the propargyl fragment was measured. The reactivity of η^5 -C₅H₅Fe(CO)₂CH₂C=CR is compared with that of the corresponding η^1 -allyl complexes η^5 -C₅H₅Fe(CO)₂CH₂C(R)=C(R')R''.

Experimental Section

General **Procedures.** A nitrogen atmosphere was employed routinely in all preparative and kinetic aspects of this work. Ventron neutral alumina, deactivated with 6% (by weight) distilled water, was used in chromatographic separations and purifications. Mass spectra (MS) were recorded by Mr. C. R. Weisenberger on an AEI Model MS-9 spectrometer at 70 eV. Elemental analyses were done by Galbraith Laboratories, Inc., Knoxville, Tenn.

Physical Measurements. Melting points were taken in evacuated tubes on a Thomas-Hoover capillary melting point apparatus and are uncorrected. 'H NMR spectra were recorded on Varian Associates A-60A and EM-360L spectrometers using tetramethylsilane (Me4Si) as an internal reference. Infrared **(IR)** measurements were made **on** Beckman 4250 and IR-9 spectrophotometers using polystyrene film for calibration. The recorded frequencies are accurate to ± 2 and ± 1 cm^{-1} , respectively. Ultraviolet (UV)-visible spectra were recorded on a Cary 17 spectrophotometer.

Materials. *p*-Toluenesulfonyl isocyanate (TSI), from Aldrich, was distilled at 115 "C **(2** torr) before use. 1,1,3-Trichlorotrifluoroacetone, from PCR, Inc., was distilled at 84 $^{\circ}$ C (760 torr). Other commercially procured reagents were used as received. The propargyl bromides

Presented in part at the Joint Central-Great Lakes Regional Meeting of the American Chemical Society, Indianapolis, Ind., May 24-26, 1978; see Abstracts, No. IKOR **7.**

and chlorides, $RC=CCH_2X$ ($R = CH_3$, C_6H_5 ; $X = Br$, Cl), were prepared by treatment of the corresponding alcohol, $RC=CCH₂OH$, from Farchan Chemical Co., with PBr_3 ^{13,14} and $SOCl_2$ ¹⁵ respectively.

Tetrahydrofuran (THF) and ether were distilled from Na/K alloy at 65 and 34.6 °C, respectively. Toluene (bp 110 °C) was distilled from K_2CO_3 , and pentane (bp 36 °C) was distilled from CaH_2 . Methylene chloride (bp **40** "C) and chlorobenzene (bp **132** "C) were purified by distillation from P_4O_{10} under nitrogen. Other solvents were of reagent grade or equivalent quality and were used without further purification.

Metal-Propargyl and $-\eta^1$ **-Allyl Complexes.** The propargyl complexes η^5 -C₅H₅Fe(CO)₂CH₂C=CR (R = CH₃,¹⁶ C₆H₅¹⁷), η^5 - $C_5H_5Mo(CO)_3CH_2C=CR$ (R = CH₃,¹⁸ C₆H₅¹⁸), η^5 -C₅H₅Mo- $(\text{CO})_2(L)CH_2C\equiv \text{CC}_6H_5$ (L = P(C₆H₅)₃,¹⁹ P(OC₆H₅)₃¹⁹), η^5 - $C_5H_5W(CO)_3CH_2C\equiv CC_6H_5$,²⁰ Mn(CO)₃CH₂C= CC_6H_5 ,¹⁷ and Mn(CO)₄[P(C₆H₅)₃]CH₂C= CR (R = CH₃,²¹ C₆H₅²¹) and the η ¹-allyl complexes $\eta^5 - C_5H_5Fe(CO)_2CH_2C(R) = C(R')R''$ $(R = R' = R'' =$ $R' = R'' = CH₃²³$ were prepared by known procedures. $H;^{22}R = R' = H, R'' = CH_3;^{22}R = R' = H, R'' = C_6H_5;^{23}R = H,$

The previously unreported η^5 -C₅H₃Cr(NO)₂CH₂C=CC₆H₅ was obtained by dropwise addition to η^5 -C₅H₅Cr(NO)₂Cl (1.06 g, 5.00 mmol), prepared by the method of King,²⁴ of $C_6H_5C\equiv CCH_2MgBr$ from Grignard-grade Mg chips (0.344 g, 24.3 mmol) and $C_6H_5C \equiv$ CCH2Br **(2.92** g, **15.0** mmol) in **50** mL of ether. The reaction mixture was stirred at 25 °C for 1.5 h, solvent was evaporated, and the remaining brown tar was extracted first with pentane **(5 X 100** mL) and then with 50 mL of 1:5 (v/v) CH₂Cl₂-pentane. The extracts were combined, solvent was evaporated, and the residual brown oil was chromatographed on alumina by eluting with pentane. The yellow band was collected, and the effluent was concentrated to afford gold leaflets of η^5 -C₅H₅Cr(NO)₂CH₂C= CC_6H_5 , which were collected by filtration: mp 76-77 °C; yield 0.38 g (26%); ¹H NMR (CDCl₃) τ 2.73 (m, C₆H₅), 4.44 (s, C₅H₅), 7.73 (s, CH₂); IR (Nujol) ν (C=C) **2173** (w), u(N=O) **1788** (vs), **1685** (vs) cm-I; MS **(60** OC, relative intensities in parentheses) prominent peaks at *m/e* **292** P' **(47), 262** (P - NO)' **(85), 232** (P - 2NO)' **(224), 177** (P - C9H7)' **(18), 167** $(P-2NO-C_5H_5)+(11)$, **147** $(P-NO-C_9H_7)+(12)$, **117** $(P-2NO$ - CgH7)' **(loo), 115** C9H7+ **(91), 52** Cr' **(100).** Anal. Calcd for CI4Hl2CrN2O2: C, **57.53;** H, **4.11.** Found: C, **57.81;** H, **4.30.**

Preparation of $MC=C(C_6H_5)C(CCl_2F)(CCIF_2)OCH_2$ **(M =** η^5 **-** $C_5H_5Fe(CO)_2$, $\eta^5-C_5H_5Mo(CO)_3$, $\eta^5-C_5H_5Cr(NO)_2)$. To a solution of **0.4-0.6** mmol of the metal-propargyl complex in **15-25** mL of $CH₂Cl₂$ was added excess $Cl₂FCC(O)CClF₂$ (generally 1.0–1.5 g, ca. 5-7 mmol) in ca. 15 mL of CH₂Cl₂. The resulting solution was stirred at 25 °C for 2-3 h, solvent was evaporated, and the residue was dissolved in minimum of 1:1 (v/v) pentane–CH₂Cl₂ and chromatographed on alumina by eluting with the same solvent mixture. The product band was collected, and the effluent was concentrated to induce precipitation of the title complex, which was collected by filtration. Details of the characterization of each product are presented below.

 η^5 -C₅H₅Fe(CO)₂C==C(C₆H₅)C(CCl₂F)(CClF₂)OCH₂: yelloworange solid; mp **103** OC; **42%** yield; 'H NMR (CDCl,) *T* **2.67** (m, (vs), 1973 (vs) cm⁻¹; MS (90 °C, relative intensities in parentheses) prominent peaks at *m/e* **506** P' (l), **450** (P - 2CO)' **(6), 292** (P - C3C13F30)+ **(1 l), 236** (P - 2CO - C3C13F30)+ **(187), 186** (C5H5)2Fe' **(177).** Anal. Calcd for Cl9HI2Cl3F3FeO3: C, **44.96;** H, **2.38;** C1, **20.95.** Found: C, **47.73;** H, **2.95;** C1, **19.22.** C_6H_5), 5.13 (s, CH₂), 5.36 (s, C₅H₅); IR (CH₂Cl₂) ν (C=O) 2025

- **(13) Ashworth, P. J.; Whitham,** *G.* **H.; Whiting, M. C.** *J. Chem. Soc.* **1957, 4633.**
- **(14) Chao, T.; Lain, Y. Bull.** *SOC. Chim. Fr.* **1933,53, 1533.**
- **(15) Klemm,** L. **H.; Klemm, R. A,; Santhanam, P. S.; White, D. V.** *J. Org. Chem.* **1971, 36, 2169.**
- **(16) Thomasson,** J. **E.; Robinson,** P. **W.; Ross, D. A.; Wojcicki, A.** *Inorg. Chem.* **1971,** *IO,* **2130.**
- (17) Roustan, J.-L.; Cadiot, P. C. R. Acad. Sci., Ser. C 1969, 268, 734.
(18) Roustan, J.-L.; Charrier, C. C. R. Acad. Sci., Ser. C 1969, 268, 2113.
- **(19) Collin, J.; Roustan,** J.-L.; **Cadiot, P.** *J. Orgunomef. Chem.* **1978,** *162,*
-
- **61. (20) Kroll,** J. *0.;* **Wojcicki, A.** *J. Orgonomet. Chem.* **1974,** 66, **95.**
- **(21) Williams,** J. **P.; Wojcicki, A.** *Inorg. Chem.* **1977,** *16,* **3116. (22) Green, M.** L. **H.; Nagy, P.** L. **I.** J. *Chem. SOC.* **1963, 189.**
-
-

 η^5 -C₅H₅Mo(CO)₃C=C(C₆H₅)C(CCl₂F)(CClF₂)OCH₂: orange solid; mp **183** "C; **58%** yield; 'H NMR (CDC13) *T* **2.60** (m, C6H5), (vs), 1939 (vs) cm⁻¹; MS (78 °C, relative intensities in parentheses) prominent **peaks** at *m/e* **576 P+ (l), 548** (P - CO)+ **(4), 163** C,H,Mo+ (2) , 115 C₉H₇⁺ (100). Anal. Calcd for C₂₀H₁₂Cl₃F₃MoO₄: C, 41.73; H, **2.10;** C1, **18.47.** Found: C, **42.00;** H, **2.18;** C1, **18.37. 4.77 (s, C₅H₅), 5.05 (s, CH₂); IR (CH₂Cl₂)** ν **(C=O) 2025 (vs), 1962**

 η^5 -C₅H₅Cr(NO)₂C=C(C₆H₅)C(CCl₂F)(CClF₂)OCH₂: green **solid;** mp 145 °C; 64% yield. ¹H NMR (CDCl₃) τ 2.68 (m, C₆H₅), (vs) cm⁻¹; MS (80 \textdegree C, relative intensities in parentheses) prominent peaks at *m/e* **506** P+ **(35), 490** (P - *0)'* **(25), 476** (P - NO)' **(76), 4.78 (s, C₅H₅), 4.94 (s, CH₂); IR (CH₂Cl₂)** ν **(N=0) 1798 (vs), 1692 ³⁷⁵**(P - NO - CC12F)' **(33), 259** (P - C2ClF3O - C9H7)' **(36), 229** (P - NO - C2CIF30 - C9H7)' **(50), 177** (P - C3C13F30 - C9H7)' **(60), 115** C9H7' **(216), 52** Cr' **(100).** Anal. Calcd for C17H,2C13CrF3N203: C,**40.21;** H, **2.36; C1,20.96.** Found: C, **40.11;** H, **2.29;** C1, **20.84.**

Preparation of $MC=C(CH_3)C(O)N[S(O)_2C_6H_4CH_3-p)CH_2(M)$ $=\frac{\eta^5-\text{C}_5\text{H}_5\text{Fe(CO)}}{2}$, $\eta^5-\text{C}_5\text{H}_5\text{Mo(CO)}_3$, $\text{Mn}(\text{CO})_4[\text{P}(\text{C}_6\text{H}_5)_3]$ and $MC=C(C_6H_5)C(0)N[S(0)_2C_6H_4CH_3-p)CH_2$ ($M = \eta^5-C_5H_5Fe$ $(CO)_2$, η^5 -C₅H₅Mo(CO)₃, η^5 -C₅H₅Mo(CO)₂JP(C₆H₅)₃)₃ η^5 -C₅H₅Mo- $(CO)_{\mathcal{A}}P(OC_6H_5)_{3}$, η^3 -C₅H₅W(CO)₃, Mn(CO)₅, Mn(CO)₄ $P(C_6H_5)_{3}$, η^5 -C₃H₃Cr(NO)₂). With the exception of η^5 -C₃H₃Fe(CO)₂C=C- $\frac{(CH_3)C(O)N[S(O)_2C_6H_4CH_3-p]CH_2}{O(O_3C_6H_4CH_3-p)CH_2}$, which was prepared as de-Н₅Fe-
I₅Mo-
<u>H₅)_{3b}
∑—С</u>-

scribed in the literature,²⁵ all of the title complexes are new. They were synthesized by the following general procedure.

To a solution of **1-4** mmol of the metal-propargyl complex in **5-20** mL of CH2C12 was syringed a deficiency of **TSI** (usually *ca.* **0.5** equiv). The resulting solution was stirred at 25 °C and concentrated. Chromatography on alumina, eluting first with hexane or hexane- $CH₂Cl₂$ to remove any unreacted propargyl complex and then with $CH₂Cl₂$, afforded the title complex which precipitated from the effluent on addition of hexane. Alternatively, the reaction solution was filtered, concentrated, and treated with hexane to induce formation of crystalline product. Details of each synthesis, including reaction time (rt), method of purification, percent yield (based on TSI), and elemental analysis, are given below. Spectroscopic data are listed in Table **I.** , **¹**

rt 0.5 h; crystallization; orange solid; mp 167 °C dec; 93% yield. Anal. Calcd for C20H17MoN06S: C, **48.49;** H, **3.46;** s, **6.47.** Found: c, **48.18;** H, **3.45; S, 6.45.** η^5 -C₅H₅Mo(CO)₃C=C(CH₃)C(O)N[S(O)₂C₆H₄CH₃-p]CH₂: .

 $Mn(CO)_{4}[P(C_{6}H_{5})_{3}]$ C=C(CH₃)C(O)N[S(O)₂C₆H₄CH₃-p]C-H₂: rt 0.5 h; chromatography; yellow solid; mp 110 °C dec; 37% yield. Anal. Calcd for C34H27MnN07PS: C, **60.08;** H, **4.00.** Found: C, **59.89;** H, **4.03.**

*n*⁵-C₅H₅Fe(CO)₂C=C(C₆H₅)C(O)N[S(O)₂C₆H₄CH₃-p]CH₂: rt 4 h; chromatography; yellow-orange solid; mp 212 °C dec; 95% yield. Anal. Calcd for C₂₄H₁₉FeNO₅S: C, 58.91; H, 3.91; S, 6.55. Found: C, **59.12;** H, **3.73;** S, **6.72.**

rt **8** h; chromatography; orange **solid;** mp **176** OC dec; *90%* yield. Anal. Calcd for C25H19MoN06S: C, **53.87;** H, **3.44;** S, **5.74.** Found: C, **53.57;** H, **3.33; S, 5.38.** η^5 -C₅H₅Mo(CO)₃C=C(C₆H₅)C(O)N[S(O)₂C₆H₄CH₃-p]CH₂: rt 0.5 h; crystallization; orange solic
Calcd for C₂₀H₁₇MoNO₆S: C, 4
48.18; H, 3.45; S, 6.45.
Mn(CO)₄[P(C₆H₃)₃]C=C(C
H₂: rt 0.5 h; chromatography; yell
Anal. Calcd for C₃₄H₂₇MnNO₇J
59.89; H, 4.03.
 n , Mn(CO)₄[P(C₆H₅)₃]C=C(CH₃)
H₂: rt 0.5 h; chromatography; yellow
Anal. Calcd for C₃₄H₂₇MnNO₇PS:
59.89; H, 4.03.
 n^5 -C₅H₅Fe(CO)₂C=C(C₆H₅)C
rt 4 h; chromatography; yellow-ora
yield. Anal. Calcd f

 η^3 -C₅H₅Mo(CO)₂[P(C₆H₅)₃]C=C(C₆H₅)C(O)N[S(O)₂C₆H₄-

CH₃-p]CH₂: rt 0.5 h; chromatography; yellow solid; mp 180 °C dec; **55%** yield. Anal. Calcd for C42H34MoN05PS: C, **63.76;** H, **4.36;** S, **4.05.** Found: C, **63.49;** H, **4.37; S, 4.05.** ,

 η^5 -C₅H₅Mo(CO)₂[P(OC₆H₅)3]C=C(C₆H₅)C(O)N[S(O)₂C₆H₄-

CH3-p]CH2: rt **0.75** h; chromatography; yellow foam that could not be crystallized; **37%** yield.

5 h; chromatography; yellow-orange solid; mp 195 °C dec; 64% yield. Anal. Calcd for $\hat{C}_{25}H_{19}NO_6SW$: \check{C} , 46.53; \check{H} , 2.97. Found: C, 46.33; H, **3.01.** η^5 -C₅H₅W(CO)₃C=C(C₆H₅)C(O)N[S(O)₂C₆H₄CH₃-p]CH₂: rt

 $M_n(CO)_{5}C=C(C_6H_5)C(O)N[S(O)_2C_6H_4CH_3-p]CH_2$: rt 5 h; crystallization; yellow-orange solid; mp 157 °C dec; 52% yield. Anal.

(25) Giering, W. P.; Raghu, S.; Rosenblurn, M.; Cutler, A.; Ehntholt, D.; Fish, R. W. *J. Am. Chem. SOC.* **1972,** *94,* **8251.**

 $\Big\}$

Calcd for $C_{22}H_{14}MnNO_8S$: C, 52.08; H, 2.78. Found: C, 51.88; H, 2.74.

 $Mn(CO)_4[P(C_6H_5)_3]C=C(C_6H_5)C(O)N[S(O)_2C_6H_4CH_3-\rho]C H_2$: rt 1 h; crystallization; yellow-orange solid; mp 120 °C dec; 80% yield. Anal. Calcd for $C_{39}H_{29}MnNO_7PS: C, 63.16; H, 3.94.$ Found: C. 63.37: H. 4.14.

 η^5 -C₅H₅Cr(NO)₂C=C(C₆H₅)C(O)N[S(O)₂C₆H₄CH₃-p]CH₂: rt 1 h; crystallization; green solid; mp 256 °C dec; 78% yield. Anal. Calcd for $C_{22}H_{19}CrN_3O_5S$: C, 53.98; H, 3.89; S, 6.34. Found: C,

54.04; H, 4.07; S, 6.42.
Preparation of η^5 -C₅H₅Fe(CO)₂C(R)C(R')(R'')C(O)N[S- $R = R' = H$, $R'' = C_6H$; $R = H$, $R' = R'' = CH_3$). With the exception noted below, these complexes were first prepared by Rosenblum et al.,⁵ whose procedure was employed in this work. (0) , $C_6H_4CH_3$, p **)** CH_2 , $(R = R' = R'' = H; R = R' = H, R'' = CH_3;$

n⁵-C₅H₅Fe(CO)₂CHCH(CH₃)C(O)N[S(O)₂C₆H₄CH₃-p]CH₂ ally, the cycloadditio was obtained by the addition of a deficiency of TSI (0.56 mL, 3.68 mmol) to η^5 -C₃H₃Fe(CO)₂CH₂CH=CHCH₃ (0.991 g, 4.27 mmol) in 15 mL of CH₂Cl₂. The resulting solution was stirred at 25 $\rm{^{\circ}C}$ for 2 h and then treated with pentane (200 mL) to precipitate yellow crystals, which were collected by filtration; mp $138 °C$ dec. Additional product was obtained on concentration of the filtrate; total yield 1.493 g (94%). Anal. Calcd for $C_{19}H_{19}FeNO_5S$: C, 53.15; H, 4.47. Found: C, 52.92; H, 4.64. Spectroscopic data are given in Table I.

General Kinetic Procedures. The kinetic studies of the reactions of metal-propargyl and $-\eta^2$ -allyl complexes with TSI were carried out with use of round-bottom flasks containing a magnetic stirring bar. The neck of the flask was fitted with a serum cap, and the flask was wrapped in aluminum foil for protection from light. A freshly chromatographed propargyl or η ¹-allyl complex was weighed in the flask under nitrogen, and to it was syringed distilled CH_2Cl_2 (or, in some experiments, toluene, chlorobenzene, or $CH₃CN$. The flask was reweighed to determine accurately the volume of added $CH₂Cl₂$ (density = 1.327 g/mL²⁶) and then placed in a constant-temperature bath. After thermal equilibrium had been reached, freshly distilled TSI at the same temperature was injected into the flask with a syringe. Following this addition, the reaction solution was kept in the thermostated bath (± 0.1 °C), generally at 25.0 °C, with magnetic stirring.

Rates of the reactions were for the most part determined by monitoring the appearance of the lactam $\nu(C=0)$ band at ca. 1700 cm-I on a Beckman 4250 infrared spectrophotometer. However, the reaction between η^5 -C₅H₅Cr(NO)₂CH₂C=CC₆H₅ and TSI was followed by measuring the growth of the higher frequency $N=0$ stretching absorption, $v_s(N=0)$, of the organochromium product at 1801 cm⁻¹, since the $\nu(\text{C}=O)$ band appears to be hidden under the $\nu_{as}(N=0)$ absorption at 1698 cm⁻¹ (in CH₂Cl₂ solution). Absorbance readings of the appropriate infrared band were made on the reaction solution by withdrawing samples with a syringe at regular time intervals, generally every 3-5 min. Matched infrared cells of various thickness (0.6-2.0 mm) were employed.

All reactions were **run** under pseudo-first-order conditions, generally with the concentration of TSI in at least a tenfold excess over that of the metal complex. They were usually followed for 10 half-lives.

Treatment of Data. From the infrared spectroscopic data pseudo-first-order rate constants, k_{obsd} , were obtained by graphing $\ln (A_{\infty})$ $-A$) vs. time, where A_m is the absorbance of the organometallic product at infinite time (experimentally, after 10 half-lives) and *A* is the absorbance of the product at any time of the reaction. For these plots, the values of A and A_o were taken to be proportional to the measured peak heights. Very good linear plots $(\overline{R}^2 > 0.99)$ were obtained on this basis. Beer's law, shown previously to hold for the ν_{as} (C \equiv O) absorption of several η^5 -C₅H₅Fe(CO)₂R complexes,²⁷ was assumed to be valid for all of the organometallic products in this study.

Results

Screening of Electrophilic Reagents. As indicated in the Introduction, a number of electrophilic molecules have been shown to undergo cycloaddition reactions with transition metal-propargyl complexes prior to this study. However, these

(26) "Handbook of Chemistry and Physics", 52nd *ed.;* Chemical **Rubber** Co.: Cleveland, Ohio, 1971-1972; **p** (2-367.

reactions were conducted under synthetic conditions and provided little basis for comparison of the relative reactivities of different electrophiles.

It was therefore essential to test the behavior of representative electrophilic reagents toward the propargyl complexes before a kinetic study could be commenced. Such a screening was conducted with a view to finding an electrophile that would react cleanly, at a rate measurable by infrared, ultravioletvisible, or 'H NMR spectroscopy at ambient temperatures. Generally, a tenfold excess of the electrophilic reagent over the metal complex in $CH₂Cl₂$ solution was employed. Characterization of the products was usually not attempted if the reaction proved unsuitable for a kinetic study.

Of the tested olefins, $TCNE^{5,7}$ reacts rapidly with η^5 - $C_5H_5Fe(CO)_2CH_2C\equiv CC_6H_5$ even at ca. -78 °C. Additionally, the cycloaddition reaction is complicated by the formation of TCNE⁻, possibly through oxidation of the adduct η^5 -C₅H₅Fe(CO)₂C==C(C₆H₅)C(CN)₂C(CN)₂CH₂ by excess TCNE. The olefins $Cl_2C=CC12$, $(C_6H_5)_2C=C(CN)_2$, and o -ClC₆H₄CH= $C(CN)_2$ show no apparent reaction with η^5 -C₅H₅Fe(CO)₂CH₂C \equiv CC₆H₅ and η^5 -C₅H₅M₀- $(CO)_{3}CH_{2}C\equiv CC_{6}H_{5}$ at 25 °C. It is noteworthy that, in contrast, $o\text{-ClC}_6H_4CH=C(CN)_2$ undergoes cycloaddition reaction with iron- η ¹-allyl complexes under similar conditions.⁵

2,3-Dichloro-5,6-dicyano- 1,4-benzoquinone reacts rapidly with η^5 -C₅H₅Fe(CO)₂CH₂C= CC_6H_5 and η^5 -C₅H₅Mo- (CO) ₃CH₂C=CC₆H₅ in CHCl₃ at room temperature, and with the former complex even at ca. -78 °C. The less electrophilic tetrachloro-1,4-benzoquinone undergoes very slow reaction with η^5 -C₅H₅Fe(CO)₂CH₂C= CC_6H_5 at 25 °C; however, this reaction is complicated by low solubility of the quinone in partially chlorinated hydrocarbon solvents and by the instability of the cycloadduct. 1 ,4-Benzoquinone does not react under these conditions.

Hexafluoroacetone readily affords cycloaddition products on treatment with metal-propargyl complexes either in neat form or in solution.8 However, the gaseous nature of (C-F3),C0 (bp **-27** "C) suggested that the closely related, but liquid (bp 84 °C), $Cl_2F\overline{C}C(O)CCIF_2$ might be easier to manipulate in kinetic studies. Synthetic-scale reactions between $Cl_2FCC(O)CClF_2$ and each of η^5 -C₅H₃Fe(CO)₂CH₂C= CC_6H_5 , η^5 -C₅H₅Mo(CO)₃CH₂C=CC₆H₅, and η^5 -C₅H₅Cr- $(NO)₂CH₂C=CC₆H₅$ (MCH₂C= $CC₆H₅$) resulted in the preparation of the expected cycloadducts $MC=C(C_6H_5)C$ **i** Hexafluoroacetone readily affords
on treatment with metal-propargyl common in solution.⁸ However, the
 F_3)₂CO (bp -27 °C) suggested that
liquid (bp 84 °C), Cl₂FCC(O)CCIF₂
nipulate in kinetic studies. Synthetic-

 $(CCl_2F)(CCIF_2)OCH_2 (I)$. The synthesis and characteriza-
 $M \leftarrow \bigcup_{r \in \mathbb{C}}^{0} cc_1r$

M
$$
\bigcup_{C_6H_5}^{C_1C_2F}
$$
 \bigcap_{I}

tion of these products, which bear strong similarities to the previously reported⁸ complexes $MC=C(C_6H_5)C$ $(CF_3)_2OCH_2$, are detailed in the Experimental Section. However, when reaction of $Cl_2FCC(O)CC1F_2$ with η^5 - $C_5H_5Fe(CO)_2CH_2C=CC_6H_5$ was followed by ¹H NMR spectroscopy, a resonance was noted at τ 6.04 which is due to $Cl_2FCC(OH)_2CCIF_2$. All attempts at removal of this diol from the acetone proved unsuccessful, thus precluding the use of $Cl_2FCC(O)CClF_2$ for kinetic studies.

Isocyanates comparised a final class of electrophiles that were subjected to the screening. The previously investigated $CIS(O)_2NCO^{5,9}$ cycloadds rapidly, with accompanying side reactions, to the propargyl fragment of η^5 -C₅H₅Fe- $(CO)₂CH₂C=CC₆H₅$ and $\eta^5-C₅H₅Mo(CO)₃CH₂C=CC₆H₅$ at room temperature. The corresponding reactions of $Cl₃Cl₃$. C(0)NCO occur at conveniently measurable rates, but the

⁽²⁷⁾ Dizikes, L. J.; Wojcicki, **A.** *J. Am. Chem. SOC.* **1977,** *99,* 5295.

products decompose gradually in solution. In contrast to the foregoing, TSI reacts with the propargyl complexes to give the cycloadducts cleanly, at a measurable rate by infrared spectroscopy at ambient temperatures. It was accordingly selected for a kinetic study.

Preparation and Characterization of Lactam Cycloaddition Products. Reactions of TSI with transition metal-propargyl and $-\eta$ ¹-allyl complexes proceed according to eq 3 and 4 to

afford the lactam cycloaddition products, I1 and 111, respectively. These products are most conveniently isolated pure when a deficiency of TSI is employed in the reaction. Under such conditions, more polar I1 and I11 can be readily separated from the corresponding unreacted metal-propargyl or $-\eta$ ¹-allyl complex by crystallization or chromatography on alumina. Generally, crystallization leads to a higher yield of the adduct, as chromatography causes decomposition in some cases. Pertinent details are provided in the Experimental Section.

Complexes I1 were isolated as air-stable solids which analyze satisfactorily for 1:1 adducts of the two reactants. The mass spectrum of η^5 -C₅H₅Fe(CO)₂C=C(C₆H₅)C(O)N[S- $(O)_2C_6H_4CH_3-p]CH_2$ displays peaks due to $(P-CO)^+$ and $(P - 2CO)^{+}$, as well as a peak of a substituted ferrocenium ion, η^5 -C₅H₅Fe(η^5 -C₅H₄C=C(C₆H₅)C(O)N[S(O)₂C₆H₄- $CH_3-p]CH_2$ ⁺, but not of the parent ion, P⁺. The mass spectrum of η^5 -C₅H₅Cr(NO)₂C=C(C₆H₅)C(O)N[S(O)₂- $C_6H_4CH_3-p\}CH_2$ shows the presence of P⁺, $(P-NO)^+$, and afford the lactam cycloaddition rively. These products are most
when a deficiency of TSI is emplosuch conditions, more polar II and
from the corresponding unreacted
complex by crystallization or ch
Generally, crystallizat I $(P - 2NO)^+$.

Other spectroscopic properties of I1 are furnished in Table I. The infrared $v(C=0)$ and $v(N=0)$ absorptions are in the range previously reported for cycloadducts derived from transition metal-propargyl complexes and various unsaturated electrophilic molecules.^{2,5,7-10} With the exception of η^5 -C₅- $H_5Cr(NO)_2C=C(C_6H_5)C(O)N[S(O)_2C_6H_4CH_3- p]CH_2$, all complexes exhibit a medium-to-strong-intensity lactam *u-* $(C=O)$ band at 1708-1681 cm⁻¹. For the chromium complex, this absorption appears to be hidden under the $v_{\text{as}}(N=0)$ band at 1698 cm⁻¹, which is substantially stronger than the v_s -(N \equiv O) band at 1801 cm⁻¹. The ¹H NMR spectra in Table I display no unusual features, being entirely consistent with the assigned structures 11. This structural assignment is strictly analogous to that made earlier for the products of reaction of metal-propargyl complexes with $CIS(O)_2NCO$.⁹ The previously reported²⁵ adduct of η^5 -C₅H₅Fe(CO)₂CH₂C=CCH₃ and TSI was also accorded structure 11.

The only new cycloadduct of type I11 resulted from reaction of TSI with η^5 -C₅H₅Fe(CO)₂CH₂CH=CHCH₃. It was characterized by elemental analysis and infrared and 'H NMR spectroscopy (Table I). These data are in full accord with structure 111, which was earlier assigned to the products of reaction of TSI with several strictly analogous iron- η^1 -allyl complexes.^{5,25} Other electrophilic isocyanates, including $CIS(O)_2NCO$, $Cl_3CC(O)NCO$, and $(2,5-C_6H_3Cl_2)NCO$, afford similar lactam adducts. $5.9.25$

Kinetic Determinations. Kinetic data were obtained by infrared spectroscopy for the reactions in eq 3 and 4 under pseudo-first-order conditions, with TSI or, in some cases, the organometallic complex in a tenfold excess over the other reactant in CH_2Cl_2 at 25.0 °C. ¹H NMR spectroscopy was employed to determine relative rate constants in special cases which will be considered later. However, no absolute rate data were obtained by this method, since most reactions proceed very rapidly at ambient temperatures and the generally required higher concentrations of the reactants. Ultravioletvisible spectroscopy was considered but not adopted, as the

spectra of $MC=C(R)C(O)N[S(O)_2C_6H_4CH_3-p]CH_2$ and the precursors $MCH₂C \equiv CR$, included in Table I, generally show relatively small differences. This method appeared feasible only for the reactions of η^5 -C₅H₅Fe(CO)₂CH₂C= CC_6H_5 and η^5 -C₅H₅Cr(NO)₂CH₂C=CC₆H₅.

Except as noted later, all reactions appear to proceed cleanly and directly to the cycloadducts. No side products were observed and, even at *-78* "C, no intermediates were detected by 'H NMR spectroscopy.

For the runs with TSI at 2×10^{-2} to 2.0 M in a tenfold excess over the organometallic reactant (MR), plots of $\ln (A_{\infty})$ $- A$) vs. time are linear and thus consistent with the rate law

$$
d[cycloadduct]/dt = k_{obsd}[MR]
$$
 (5)

where

$$
k_{\text{obsd}} = k[\text{TSI}]^n \tag{6}
$$

A typical plot is shown in Figure 1 for η^5 -C₅H₅W- (CO) ₂C $=CC₆H₅$.

When reactions were run with the metal complex in tenfold excess at 0.2-1.0 M, plots of $\ln(A_{\infty} - A)$ vs. time also showed linearity, being in accord with the rate law

$$
d[cycloadduct]/dt = k'_{obsd}[TSI]
$$
 (7)

where

$$
k'_{\text{obsd}} = k[\text{MR}]^n \tag{8}
$$

A representative graph is given in Figure 2 for η^5 -C₅H₅Mo- (CO) ₃CH₂C \equiv CC₆H₅.

The foregoing results indicate that the cycloaddition is first order in each reactant and second order overall; i.e., the value of *n* in eq 6 and 8 equals 1:

$$
d[cycloadduct]/dt = k[MR][TSI]
$$
 (9)

This rate law is further supported by a close similarity (within 10%) of k_{obsd} and k'_{obsd} for runs employing excess TSI and excess metal complex, respectively, in same concentrations.

The second-order rate coonstants, *k,* for the cycloaddition reactions of metal-propargyl and $-\eta^1$ -allyl complexes with TSI in CH₂Cl₂ at 25.0 \degree C are compiled in Table II. Each of these values represents the average of ca. four determinations, the agreement among which is indicated in the table.

A few of the reactions studied require special comments. The complex η^5 -C₅H₅Mo(CO)₂[P(C₆H₅)₃]CH₂C= CC_6H_5 ¹⁹ present as the trans isomer, affords the trans cycloadduct exclusively, as inferred by examination of the 'H NMR spectrum of the product. The related η^5 -C₅H₅Mo(CO)₂[P- $(OC_6H_5)_3$]CH₂C= CC_6H_5 ,¹⁹ an approximately 1.7:1.0 transcis mixture which does not appear to change on the time scale of the experiment, reacts with TSI to yield an adduct of ca. 7:l trans-cis isomeric composition. Good linear plots of In $(A_x - A)$ vs. time were obtained by infrared spectroscopy for the latter reaction.

Cycloaddition between η^5 -C₅H₅Fe(CO)₂CH₂CH=CHCH₃ and TSI was examined to elucidate the relative reactivities of the *E* and *Z* isomers of the η^1 -allyl complex. A 1.8:1.0 *E-Z* mixture of the organoiron complex (1.3 M) was allowed to react with a deficiency (0.54 equiv) of TSI in CH_2Cl_2 , and unreacted η^5 -C₅H₅Fe(CO)₂CH₂CH=CHCH₃ was then separated from the cycloadduct by chromatography on alumina.

Table 11. Second-Order Rate Constants for the Cycloaddition Reactions of MCH₂C=CR and MCH₂C(R)=C(R')R" with TSI in CH,CI, at 25.0 **"C**

complex	$10^{2}k$. ⁰				
М	R	Rʻ	R''	$M^{-1} s^{-1}$	relk
$Mn(CO)$ ₄ [P(C ₆ H _c) ₃]	CH ₃			$\gtrsim 20^b$	≥ 3000
η^5 -C _s H _s Fe(CO),	CH,			6.3	1000
η^5 -C _s H _s Mo(CO) ₂ -	$C_{\kappa}H_{\kappa}$			3.3	540
$[PC_{6}H_{3}]$					
η^5 -C _t H _s Mo(CO) ₃	CH,			2.1	340
$Mn(CO)$ $[P(C, H_1)$	$C_{\rm A}H_{\rm A}$			0.77	130
η^5 -C,H,Mo(CO),-	$C_{\kappa}H_{\kappa}$			0.66	110
$[POC6H3)3]$					
η^5 -C _s H _s Cr(NO) ₂	$C_{6}H_{6}$			0.63 ^c	100
η^5 -C _s H _s Fe(CO) ₂	C_6H_5			0.21	34
η^5 -C _s H _s Mo(CO) ₃	C_6H_5			0.070	11
η^5 -C _s H _s W(CO) ₃	$C_{\kappa}H_{\kappa}$			$_{0.027}$	4.4
$Mn(CO)$ _c	C_6H_6			0.0061	1.0
η^5 -C, H, Fe(CO),	н	н	CH,	11 ^d	1800
η^5 -C, H, Fe(CO),	н	CH ₃	CH,	7.2	1200
η^5 -C _s H _s Fe(CO),	н	H	н	0.26	43
η^{s} -C _s H _s Fe(CO),	н	н	$C_{\epsilon}H_{\epsilon}$	0.25	41

 $\pm 10\%$ or better for MCH₂C≡CR and $\pm 6\%$ for MCH₂C(R)= $C(R')R''$ unless noted otherwise. P Estimated value; see the text. $c_{\pm 13\%}$. d For an $E-Z$ mixture; see the text.

Table 111. Second-Order Rate Constants for the Cycloaddition Reaction of η^5 -C₅H₅Mo(CO)₃CH₂C=CCH₃ with TSI in Toluene

	temp, $^{\circ}$ C 10 ² k , $^{\alpha}$ M ⁻¹ s ⁻¹ temp, $^{\circ}$ C 10 ² k , $^{\alpha}$ M ⁻¹ s ⁻¹		
25.0	1.1 ^b	39.8	2.6
30.0	1.4	46.6	3.9

 $a \pm 6\%$ unless noted otherwise. $b \pm 8\%$.

The 'H NMR spectrum showed the unreacted complex to be **2.9:1.0** *E-Z*. Thus, the ratio of the rate constants, k_Z/k_E , is 2.0.²⁸ Since the starting isomeric mixture of η^5 -C₅H₅Fe- $(CO)_2CH_2CH=CHCH_3$ reacts rather rapidly $(t_{1/2} \approx 2 \text{ min})$ with TSI, only a small number of readings could be taken by infrared spectroscopy. **As** a result, even though the two isomers differ in reactivity, the expected nonlinearity of the graph of In $(A_{\infty} - A)$ vs. time was not observed.

The manganese complex $Mn(CO)_{5}CH_{2}C\equiv CC_{6}H_{5}$ undergoes cycloaddition slowly, and after ca. 8 h (<5 half-lives) decomposition of the product becomes noticeable. The final readings *(A,)* were obtained on freshly prepared solutions of the adduct of the appropriate concentrations. By contrast, the reaction of the phosphine-substituted $Mn(CO)_{4}[P(C_{6}H_{5})_{3}]C-$ H₂C=CCH₃ with excess TSI is essentially complete in 3 min. Hence the rate constant in Table I1 is only a rough estimate.

The relative rate constants for the cycloaddition of TSI to η^5 -C₅H₅Fe(CO)₂CH₂C=CC₆H₅ and η^5 -C₅H₅Cr- $(NO)_2CH_2C\equiv CC_6H_5$ were compared by ¹H NMR spectroscopy. A solution of η^5 -C₅H₅Fe(CO)₂CH₂C= CC_6H_5 (0.41 M), η^5 -C₅H₅Cr(NO)₂CH₂C= CC_6H_5 (0.15 M), and TSI (0.10 M) in CDCl₃ was stored for 0.5 h at 25 °C, after which time the concentrations of the four organometallic species were determined by integration of the C_5H_5 resonances. A ratio, k_{Cr}/k_{Fe} = 2.5, was obtained on this basis.²⁸ This value may be compared with $k_{Cr}/k_{Fe} = 3.0$ obtained by infrared spectroscopy in $CH₂Cl₂$ at 25.0 °C.

The dependence of the rate constant on temperature was determined for the reaction of η^5 -C₅H₅Mo(CO)₂CH₂C= CCH₃ with TSI in toluene at 25.0-46.6 °C. From the data contained in Table III the activation parameters $E_a = 11.5$ kcal/mol, $\Delta H^* = 10.9$ kcal/mol, and $\Delta S^* = -31$ eu were calculated.

Table **IV.** Second-Order Rate Constants for the Cycloaddition Reactions of MCH₂C= CR with TSI at 25.0 °C

complex			$10^{2}k$. ^{a}	ϵ (temp,	
м	R	solvent	$M^+ s^{-1}$	$^{\circ}$ C) ^b	
n° -C _c H _c M _o (CO), η^5 -C,H,Mo(CO), η^5 -C, H, Mo(CO), η^5 -C,H,Fe(CO), n^5 -C, H, Fe(CO),	CH, CH. CH, $C_{\rm g}H_{\rm g}$ $C_{6}H_{5}$	toluene chlorobenzene CH ₂ Cl ₂ CH, Cl, CH ₃ CN	1.1 1.7 2.1 0.63 1.2	2.38(25) 5.62(25) 8.93(25) 8.93(25) 37.5(20)	

^a ±10% or better. ^b From: Riddick, J. A.; Bunger, W. B. "Organic Solvents", 3rd ed.; Weissberger, **A.,** Ed; Wiley-Interscience: New York, 1970.

The influence of solvent on the rate of cycloaddition was examined for η^5 -C₅H₅Mo(CO)₃CH₂C=CCH₃ in toluene and chlorobenzene in addition to CH_2Cl_2 . Because this reaction is already quite rapid in $CH₂Cl₂$, the effect of a more polar solvent, CH₃CN, was tested instead on the less reactive η^5 - $C_5H_5Fe(CO)_2CH_2C\equiv CC_6H_5.$ The appropriate rate constants are given in Table IV.

Discussion

Since no intermediates could be detected, the reactions in eq **3** and **4** appear to proceed by one of two general mechanisms. They may follow a two-step pathway shown in eq **¹** and **2,** with the second step being much faster than the first. Alternatively, they take place in a concerted fashion.

The small ΔH^* (10.9 kcal/mol) and the large negative ΔS^* (-31 eu) for the reaction of η^5 -C₅H₅Mo(CO)₃CH₂C \equiv CCH₃ with TSI do not distinguish between the foregoing mechanisms for the propargyl complexes. However, a differentiation between dipolar (or ionic) and nonpolar reaction pathways can often be made by examining the dependence of the rate constant on the nature of the solvent.²⁹ In the present study, only a twofold increase in k obtains for the reaction of η^5 - $C_5H_3Mo(CO)_3CH_2C\equiv CCH_3$ with TSI as the solvent changes from toluene (ϵ = 2.38) to CH₂Cl₂ (ϵ = 8.93). A comparable increase in *k* is observed for the cycloaddition between η^2 - $C_5H_5Fe(CO)$, $CH_2C\equiv CC_6H_5$ and TSI on going from CH_2Cl_2 to CH_3CN (ϵ = 37.5). Such small changes indicate a relatively nonpolar transition state which would be consistent with a concerted process for the cycloaddition reaction in eq **3.** However, these rate data are not incompatible with the alternative, two-step pathway. Reactions between two **un**charged species to give ionic products may exhibit a small solvent effect on rate if the transition state is developed early along the reaction coordinate.³⁰ Such a situation apparently exists for the reaction of $(C_2H_5)_3N$ with C_2H_5I to give $(C_2H_5)_4N^+I^-$ (Menshutkin reaction). There the relative rate constants (at 30 °C) in the solvents chlorobenzene, CH_2Cl_2 , and C_2H_5CN are 1.0, 4.3, and 6.1, respectively.³¹ Similarly, the reaction between $Ir(CO)[P(C_6H_5)_3]_2Cl$ and CH₃I, which initially affords $Ir(CO)[P(C_6H_5)_3]_2(CH_3)Cl^+I^-$, experiences only ca. tenfold rate acceleration on changing the solvent from benzene to dimethylformamide.³²

Because of the foregoing considerations we cannot determine unambiguously whether the reaction in eq **3** proceeds via a dipolar intermediate or in a concerted fashion. However, previous stereochemical work on the cycloaddition between transition metal-propargyl complexes and $CF₃(CN)C=C(C N$)CF₃ ruled out a concerted mechanism for that reaction.³ We therefore assume that the reaction in point entails a two-step process depicted in *eq* **1.** The corresponding cyclo-

⁽²⁸⁾ For the appropriate equations see: Russell, G. **A.** In "Technique of Organic Chemistry"; U'eissberger, **A,,** Ed.; Interscience: New York, 1961; Vol. **VIII,** Part I, p 344.

⁽²⁹⁾ **Huisgen,** R. *Acc. Chem. Res.* **1977,10,** 117 and references cited therein. (30) Wigfield, D. C.; Lem, **B.** *Tetrahedron* **1975,** *31,* 9.

⁽³¹⁾ Hartmann, H.; Schmidt, **A.** P. *2. Phys. Chem. (Wiesbaden)* **1969,66,** 183.

⁽³²⁾ Chock, P. B.; Halpern, J. *J. Am. Chem. SOC.* **1966,** *88,* 3511.

addition of the n^1 -allyl complexes and TSI (eq 4) is thought to involve a parallel mechanism (eq 2). Zwitterionic intermediates were detected and intercepted in the reaction of η^5 -C₅H₅Fe(CO)₂CH₂C(R)=C(R')R'' with SO₂.^{11,12}

Before discussing the rate data compiled in Table 11, we wish to address the question of reversibility of the two steps comprising the reactions in *eq* 1 and 2. With the exception of the adducts derived from the propargyl complexes and SO₂ which revert to the reactants under certain conditions,¹⁶ these cycloaddition products display no apparent tendency to dissociate into their components at ambient temperatures.^{7-10,12} Thus, the two steps of eq 1 and 2 are not *both* readily reversible. However, it cannot be determined whether the first or second step *alone* is reversible for the reactions examined in this study. Since carbon-carbon bonds are generally kinetically stable, we assume that each of the two steps shows little, if any, propensity for back-reaction. This would mean that the rate constants in Table I1 refer to the formation of the zwitterion (the first step) and are free of equilibrium complications.

The aforementioned rate constants span a range of ca. 3000 for the different propargyl complexes (MCH₂C $=$ CR) examined. For the unsubstituted metal carbonyl and cyclopentadienylmetal carbonyl and nitrosyl complexes, the value of *k* decreases in the order M = η^5 -C₅H₅Cr(NO)₂ > η^5 - $C_5H_5Fe(CO)_2 > \eta^5-C_5H_5Mo(CO)_3 > \eta^5-C_5H_5W(CO)_3 >$ $Mn(CO)$ ₅ when R = C₆H₅ and in the order M = n^5 - $C_5H_5Fe(CO)_2 > \eta^5-C_5H_5Mo(CO)_3$ when $R = CH_3$. Interestingly, the relationship $M = \eta^5 - C_5H_5Cr(NO)_2 > \eta^5$ - $C_5H_5Fe(CO)_2$ is the opposite of that found for the reaction of the corresponding η^1 -allyl complexes, MCH₂CH=CH₂, with $o\text{-}CIC_6\hat{H}_4CH=C(CN)_2^5$. However, exactly the same order was observed for sulfur dioxide insertion, $M = \eta^5$ - $C_5H_5Cr(NO)_2R > \eta^5-C_5H_5Fe(CO)_2R$ when $R = CH_2C_6H_5$ and $C_6H_5^{33}$ This order may result from a lower formal oxidation state of chromium(0) than of iron(I1). In the case under investigation, a more negative chromium(0) can accelerate the reaction by (1) increasing electron density at the propargyl $C = C$ and thus making it more susceptible to attack by the electrophilic TSI, (2) weakening the M- \sim σ bond and promoting a σ -to- π rearrangement, and (3) stabilizing the incipient metal- η^2 -allene bond through greater π back-donation. Of course, some of these effects are not readily separable, and their relative contributions cannot be evaluated. It is also to be noted that the order $M = \eta^5 - C_5 H_5 M_0 (CO)_3 > \eta^5$. $C_5H_5W(CO)$ ₃ holds for the reactions of the corresponding η ¹-allyl²³ and alkyl³³ complexes with other electrophiles such as *SO2.*

Replacement of a carbonyl ligand in $MCH_2C\equiv CC_6H_5$ (M = Mn(CO)_5 or η^5 -C₅H₅Mo(CO)₃) with P(C₆H₅)₃ or P(O- (C_6H_5) ₃ leads to a substantial increase in the rate of the cycloaddition reaction. Thus, $M = Mn(CO)_4[P(C_6H_5)_3]$ $Mn(CO)$ ₅ and $M = \eta^5 - C_5H_5Mo(CO)_2[P(C_6H_5)_3] > \eta^5$ - $C_5H_5Mo(CO)_2[POC_6H_5)_3] > \eta^5-C_5H_5Mo(CO)_3$. Since σ donor strength of the relevant ligands follows the order P- $(C_6H_5)_3$ > $\tilde{P}(\text{OC}_6H_5)_3$ > CO^{34} the increase in *k* parallels an increase in electron density at the metal. Thus, the observed rate acceleration can be rationalized in the same manner as for η^5 -C₅H₅Cr(NO)₂ vis-ã-vis η^5 -C₅H₅Fe(CO)₂. A similar trend was noted for the rate of the cycloaddition between η^5 -C₅H₅Fe(CO)(L)CH₂CH=CH₂ and cyano olefins, viz., L $= P(OCH₂)₃ CCH₃ > P(OC₆H₅)₃ > CO⁶$ Furthermore, electrophilic attack of SO_2 at η^5 -C₅H₅Fe(CO)(L)CH₃ follows the order $L = P(n-C_4H_9)_3 > P(C_6H_5)_3 > CO^{35}$

For a given metal and ancillary ligands, the rate constant depends on the propargyl substituent, R, and decreases from

 $R = CH_3$ to $R = C_6H_5$. Thus, for $Mn(CO)_4[P(C_6H_5)_3]$ - $CH_2C=CR$, $k_{CH_3}/k_{C_6H_5}=16$, and for each of η^3 -C₅H₅Fe- $(CO)₂CH₂C=CR$ and η^3 -C₅H₃M₀(CO)₃CH₂C=CR, $k_{CH₃/}$ $k_{C,H_1} = 30$. The faster reaction of the methylpropargyl complexes than of the corresponding phenylpropargyl complexes accords with both steric and electronic properties of the two substituents. **A** contributing resonance structure, **IV,** would deactivate the $C = C$ bond of the phenylpropargyl complex relative to that of the methylpropargyl complex to attack by TSI.

$$
MCH2 = c \leftarrow
$$

A similar comparison of the η^1 -allyl complexes η^5 - $C₅H₅Fe(CO)$ ₂CH₂ $\dot{C}(R)$ = $C(R')R''$ affords the following order of reactivity as a function of the substrate ligand: $CH₂Cl₂$ $H=CHCH₃$ (relative $k = 1800$) > $CH₂CH=COCH₃$)₂ (relative $k = 1200$) > CH₂CH=CH₂ (relative $k = 43$) \approx CH₂- $CH=CHC₆H₅$ (relative $k = 41$). With the exception of the cinnamyl complex, which shows an unexpectedly fast reaction when compared with the allyl complex, the foregoing order is readily explicable by a combination of electronic and steric effects. The presence of the electron-releasing $CH₃$ group(s) apparently activates the η^1 -allyl C=C bond to attack by the electrophilic TSI, since both the crotyl and the 3-methyl-2 butenyl complexes react substantially faster than the allyl complex. The importance of steric effects is demonstrated by the somewhat greater reactivity of the crotyl complex than of the 3-methyl-2-butenyl complex. Additionally, the less hindered Z isomer of η^5 -C₅H₅Fe(CO)₂CH₂CH=CHCH₃ undergoes cycloaddition twice as rapidly as the more encumbered *E* isomer.

It is of some interest to compare the reactivities of the analogous, structurally related propargyl and η ¹-allyl complexes. Surprisingly, these reactivities are very similar. Accordingly, η^5 -C₅H₅Fe(CO)₂CH₂C \equiv CC₆H₅ (relative $k = 34$) cycloadds TSI at about the same rate as does η^5 -C₅H₅Fe- $(CO)₂CH₂CH=CHC₆H₅$ (relative $k = 41$), and the reactivity of η^5 -C₅H₃Fe(CO)₂CH₂C=CCH₃ (relative $k = 1,000$) is close to that of η^5 -C₅H₃Fe(CO)₂CH₂CH=CHCH₃ (relative $k =$ 1800).

The foregoing behavior contrasts with that of organic olefins and acetylenes toward electrophiles. The olefins display greater reactivity than the structurally related acetylenes;³⁶ e.g., reaction with bromine of $C_6H_5CH=CHC_6H_5$ proceeds 250 times as rapidly as that of $C_6H_5C\equiv CC_6H_5$.³⁷ The difference may be ascribed to higher ionization energies of the π electrons of the acetylenes compared to those of the olefins. 38

The observed similarity in reactivity of the structurally related propargyl and η^1 -allyl complexes toward TSI is not general among electrophiles undergoing cycloaddition according to eq 1 and 2. In fact, $o\text{-ClC}_6H_4CH=C(CN)_2$ and NCC $=$ CCN react readily with the η ¹-allyl complexes^{5,21} but not with the propargyl complexes.21 At the other extreme of the relative reactivity scale are SO₂, which reacts rapidly with η^5 -C₅H₅W(CO)₃CH₂C=CR²⁰ but very slowly (and with insertion) with η^5 -C₅H₅W(CO)₃CH₂C(R)=-C(R['])R^{''},²³ and neat $(CF_3)_2CO$, which cycloadds to η^5 -C₅H₅Fe(CO)₂CH₂C=CR but not to η^5 -C₅H₅Fe(CO)₂CH₂C(R)=C(R')R^{'', 18} Clearly, selectivity of electrophiles to attack at the propargyl or the η ¹-allyl fragment is an important but as yet poorly understood feature of the cycloaddition reaction.

⁽³³⁾ Jacobson, S. E.; Wojcicki, A. J. Organomet. Chem. 1974, 72, 113.
(34) Graham, W. A. G. *Inorg. Chem.* 1968, 7, 315.
(35) Graziani, M.; Wojcicki, A. *Inorg. Chim. Acta* 1970, 4, 347.

⁽³⁶⁾ Olah, G. **A.** "Friedel-Crafts and Related Reactions"; Interscience: New **York,** 1963; Vol. 2, pp 1144-1149.

⁽³⁷⁾ Robertson, P. W.; Dasent, W. E.; Milburn, R. **M.;** Oliver, W. H. *J. Chem. SOC.* **1950, 1628.**

⁽³⁸⁾ Walsh, **A.** D. *Annu. Rep. Prog. Chem.* **1947,** *44,* 35.

Conclusion

The present study has elucidated several structure-reactivity relationships in the $[3+2]$ cycloaddition reaction between transition metal-propargyl complexes and TSI. Accordingly, the bimolecular rate constant is sensitive to the nature of the metal together with its ancillary ligands $(\eta^5$ -C₅H₅Cr(NO)₂ > η^5 -C₅H₅Fe(CO)₂ > η^5 -C₅H₅Mo(CO)₃ > η^5 -C₅H₅W(CO)₃ > $Mn(CO)$ ₅) and particularly sensitive to replacement of CO with stronger bases (i.e., $L = P(C_6H_5)_3 > P(OC_6H_5)_3 > CO$). Methylpropargyl complexes react considerably faster than the corresponding phenylpropargyl complexes. Interestingly and perhaps fortuitously, analogous, structurally related ironpropargyl and $-\eta^1$ -allyl complexes cycloadd at comparable rates. The cycloaddition reaction shows a small solvent effect and exhibits a large negative ΔS^* . It was not possible unequivocally to distinguish between a two-step dipolar mechanism and a concerted one from these data alone.

Acknowledgment. We are grateful to the National Science Foundation for support of this research through Grants CHE-7602413 and CHE-7911882.

Registry No. I (M = η^5 -C₅H₅Fe(CO)₂), 76514-46-0; I (M = η^5 -C₅H₅Mo(CO)₃), 76498-72-1; **I** (M = η^5 -C₅H₅Cr(NO)₂), 76498-73-2; **II** $(M = \eta^5 \text{-} C_5 H_5 Fe(CO)_2$, $R = CH_3$, 40695-14-5; **II** $(M =$

 η^5 -C₅H₅Mo(CO)₃, R = CH₈), 76498-74-3; II (M = Mn(CO)₄[P- $(C_6H_5)_3$, R = CH₃), 76498-75-4; **II** $(M = \eta^5-C_5H_5Fe(CO)_2, R =$ C_6H_5), 76498-76-5; **II** $(M = \eta^5 - C_5H_5M_0(CO)_{3}$, $R = C_6H_5$, $76498-77-6$; **II** $(M = \eta^5-C_5H_5Mo(CO)_2[P(C_6H_5)_3], R = C_6H_5),$ $76498-78-7$; **II** ($\dot{M} = \eta^5 - C_5H_5M_0(CO)_2[P(OC_6H_5)_3]$, $R = C_6H_5$) (cis isomer), 76498-79-8; II ($M = \eta^5$ -C₅H₅Mo(CO)₂[P(OC₆H₅)₃], R = C_6H_5) (trans isomer), 76549-10-5; **II** (M = η^5 -C₅H₅W(CO)₃, R = C_6H_5), **76498-80-1;** II (M = Mn(CO)₅, R = C_6H_5), **76498-81-2**; II $(M = Mn(CO)_4[P(C_6H_5)_3], R = C_6H_5$, 76498-82-3; **II** $(M = \eta^5 C_5H_5Cr(NO)_2$, $R = C_6H_5$), 76498-83-4; **III** ($M = \eta^5 \cdot C_5H_5Fe(CO)_2$, $R = R' = H$, $R'' = CH_3$) (trans isomer), 76514-47-1; III (M = n^5 -C₅H₅Fe(CO)₂, R = R' = H, R'' = CH₃) (cis isomer), 76581-97-0; η^5 -C₃H₃Cr(NO)₂CH₂C≡CC₆H₃, 76498-84-5; Cl₂FCC(O)CCIF₂, **79-52-7;** TSI, **4083-64-1; q5-C5H5Fe(C0)2CH2C=CCH3, 34822-36-1;** η ⁵-C₅H₅Fe(CO)₂CH₂C≡CC₆H₅, 33114-75-9; η ⁵-C₅H₅Mo-(CO)₃CH₂C=CCH₃, 32877-61-5; η^5 -C₅H₃Mo(CO)₃CH₂C=CC₆H₃, 32877-62-6; η^5 -C₅H₅Mo(CO)₂[P(C₆H₅)₃]CH₂C=CC₆H₅, 54775-72-3; η^5 -C₅H₅Mo(CO)₂[P(OC₆H₅)₃]CH₂C= CC_6H_5 , 69372-50-5; η^5 -C₅H₃W(CO)₃CH₂C≡CC₆H₅, 32993-03-6; Mn(CO)₅CH₂C≡CC₆H₅, **23626-46-2; Mn(CO)4[P(C6H5),]CH2C~CH,, 64070-5 1-5;** Mn- $(CO)_2CH_2CH=CH_2$, 38960-10-0; $\eta^5-C_5H_5Fe(CO)_2CH_2CH=$ $CHCH_3(E \text{ isomer}), 56389-74-3; \eta^5-C_5H_5Fe(CO)_2CH_2CH=CHC_6H_5,$ **31798-46-6; q5-C5H5Fe(C0)2CH2CH=C(CH3)2, 38905-70-3; 7'-** $C_5H_5Cr(NO)_2Cl$, 12071-51-1; $\eta^5-C_5H_5Fe(CO)_2CH_2CH=CHCH_3$ **(Z** isomer), **56389-75-4.** $(CO)_4[P(C_6H_5)_3]CH_2C=CC_6H_5$, 64070-52-6; $\eta^5-C_5H_5Fe-$

Contribution from the Department of Chemistry, California State University, Northridge, California **91 330,** and the Istituto di Chimica Generale ed Inorganica dell'Università di Torino, 10125 Torino, Italy

Reactions of Protic Acids with a Hydridoorganometal Cluster: $HRu_3(CO)_9(C_2C(CH_3)_3)$

CLAUDIA BARNER-THORSEN, EDWARD ROSENBERG,* GLORIA SAATJIAN, SILVIO AIME, LUCIAN0 MILONE,* and DOMENICO OSELLA

Received *July 22, 1980*

The titrations of $HRu_3(CO)_9C_6H_9$ (I), $HRu_3(CO)_8(C_6H_9)PR_3$ (R = C₆H₅, OCH₃) (II), and $HRu_3(CO)_7(C_6H_9)(PR_3)_2$ $(R = C_6H_5, OCH_3)$ (III) with CF₃SO₃H in CD₂Cl₂ have been followed by variable-temperature ¹H NMR. Initial protonation takes place at the metal core, but significant differences in the relative basicities and the rates of inter- and intramolecular hydride exchange are observed. In neat sulfuric acid a second protonation of I takes place at the organic ligand to yield a dicationic dihydrido complex $H_2Ru_3(CO)_9(HC=CC(CH_3)_3)^{2+}$. In the case of II two isomeric dications are obtained as kinetic products with subsequent rearrangement to the more thermodynamically stable isomer. In D₂SO₄ II gives only the more thermodynamically stable product while deuterated **II** in H₂SO₄ gives a different isomer ratio than II in H₂SO₄. A mechanism explaining this unusual deuterium isotope effect is presented and discussed.

Introduction

Dynamic NMR studies of the reactions of protic acids with low oxidation state mononuclear organometallic complexes have yielded much useful information about the basicity of different types of organo transition metal compounds.' Direct protonation of the metal atom has **been** demonstrated for many complexes by using NMR techniques. The transition metal "hydride" bond may be long-lived as in the case for π -arene complexes² or may be a short-lived intermediate as has been invoked in acid cleavage of metal σ -alkyls³ and in the protonation of η^4 -diene complexes to form η^3 -allyl cations.¹ There are also cases where protonation leading to carbon-metal cleavage can be shown to take place directly on the organic ligand (i.e., σ -allyl to π -olefin).⁴ There have been few detailed studies on the reactions of low oxidation state polynuclear organometallic complexes with protic acids.⁵ The lower reactivity of the polynuclear organometallics holds out the possibility of observing intermediates in multistep protonation processes. Local differences in cluster atom environments and overall electrophilic reactivity of the ligand can be estimated from protonation studies followed by NMR.

Clusters of structural type $(H)Ru_3(CO)_9(C_2R)$ (I) are ob-

tainable in good yields by reaction of $Ru_3(CO)_{12}$ with terminal acetylenes.⁶ The dissolution of $Ru_3(CO)_{12}$ in 98% H₂SO₄ has

- **(2)** T. C. Flood, E. Rosenberg, and **A.** Sarhangi, *J. Am. Chem. SOC., 99,* **4334 (1977),** and references therein.
- **(3) T.** *G.* Attig and A. Wojcicki, *J. Am. Chem. Soc.,* **96, 262 (1974). (4) M.** Rosenblum, *Arc. Chem. Res.,* **7, 122 (1974).**
-
-
- **(5)** E. G. Bryan, W. G. Jackson, B. **F.** G. Johnson, J. W. Kelland, J. Lewis, and K. **T.** Schoroo. *J. Oreunomet. Chem..* **108. 385 (1976). (6) E. Sappa, O. Gambino, L. Milone, and** *G.* **Cetini,** *J. Organomet. Chem.***, 39, 169 (1972).**

0020-1669/81/1320-1592\$01.25/0 *0* **1981** American Chemical Society

^{*}To whom correspondence should be addressed: E.R., California State University; L.M., Università di Torino.

⁽I) J. C. Kotz and D. G. Pedrotty, *Organomer. Chem. Rec., Sect. A,* **4,470 (1969);** L. **M.** Jackman and F. **A.** Cotton, Eds., "Dynamic NMR Spectroscopy", Academic Press, New **York, 1975.**